If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y-y^2=-41
We move all terms to the left:
4y-y^2-(-41)=0
We add all the numbers together, and all the variables
-1y^2+4y+41=0
a = -1; b = 4; c = +41;
Δ = b2-4ac
Δ = 42-4·(-1)·41
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{5}}{2*-1}=\frac{-4-6\sqrt{5}}{-2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{5}}{2*-1}=\frac{-4+6\sqrt{5}}{-2} $
| -6x+9=4x=14 | | 2s^2-180=0 | | 10x−3+127=180 | | (6t-4)(6t-4)=6 | | 90-4y=10 | | -2(x+3-5=11 | | g/2− –1=3 | | 42/6=a | | 54/6=a | | -7x=-11=3 | | −9x+7=−9x+7= −6x+37−6x+37 | | 3x−1= −2x+39 | | 〖27〗^(3x-7)=9^(6x-1) | | ×-7y+42=0 | | 2q=12q | | 10s+6=4s | | 2b-10=12 | | 20.10(v-4)=-40+10v | | 19.8-6z=7+4(9-10z) | | 18.68w+21=5w+7(3+9w) | | 6(x-10)-2(x-5)=150 | | 7x=–25+4 | | 4(3x-3)=2(x-5+3x) | | 4(3x-3)=2(x-5+3x( | | Z/x+15=4/9 | | x*8+26=x*5+83 | | 7x−2(71−x)−5=0 | | 3y=1/12 | | 6(x-1)+3x=90 | | (2x+6)4=96 | | 4Z+6+8z=10+12z-4 | | 8x÷4+12=5x-9 |